SOURCE DRIVER FOR 240-OUTPUT TFT-LCD (64 GRAY SCALES)

DESCRIPTION

The μ PD16641 is a source driver for TFT-LCD 64 gray scale displays. Its logic circuit operates at 3.3 V and the driver circuit operates at 3.3 or 5.0 V (selectable). The input data is digital data at 6 bits $\times 3$ dots, and 260,000 colors can be displayed in 64-value outputs γ-corrected by the internal D/A converter and 11 external power supplies.

Because the clock frequency is 33 MHzmin , the μ PD16641 can be used in TFT-LCD panels conforming to the VGA standards.

FEATURES

- Precharge-less output buffer
- 64-value output by 11 external power supplies and internal D/A converter
- Level of γ-corrected power supply can be inverted
- Output voltage range: 2.8 VP-PMAX. (at supply voltage VDD2 of driver circuit = 3.0 V)

> 4.3 VP-PMAX. (at supply voltage VDD2 of driver circuit = 4.5 V)

- CMOS level input
- 6 bit (gray scale data) $\times 3$ dot input
- High-speed data transfer: $f_{\text {max }}=33 \mathrm{MHzmin}$. (internal data transfer rate at supply voltage VDD1 of logic circuit $=3.0 \mathrm{~V}$)
- 240 outputs
- Supply voltage of driver circuit selectable ($\mathrm{V}_{\text {sel }}=\mathrm{H}: 3.3 \mathrm{~V}, \mathrm{~V}_{\text {sel }}=\mathrm{L}: 5.0 \mathrm{~V}$)
- Slim TCP

ORDERING INFORMATION

Part No.	Package
μ PD16641N $-\times \times \times$	TCP (TAB package)

The TCP is custom-made. For details, consult NEC

1. BLOCK DIAGRAM

2. PIN CONFIGURATION (standard TCP: μ PD16641N- $\times \times \times$)

$V_{\text {sel }}$ pin is internally pulled up.
Therefore, the number of input pins can be reduced by opening or short-circuiting these pins to Vss2 by means of TCP wiring.

3. PIN DESCRIPTION

Pin Symbol	Pin Name	Description
S_{1} to S_{240}	Driver output	Output 64 gray scale analog voltages converted from digital signals.
Doo to Do5	Display data input	Inputs 18 -bit-wide display gray scale data (6 bits) $\times 3$ dots (RGB). Dxo: LSB, Dx5: MSB
D_{10} to D_{15}		
D_{20} to D_{25}		
R/L	Shift direction select input	This pin inputs/outputs start pulses when two or more μ PD16641s are connected in cascade. Shift direction of shift register is as follows: $R / \bar{L}=H: S T H R$ input, $S_{1} \rightarrow S_{240}$, STHL output $R / \bar{L}=L$: STHL input, $S_{240} \rightarrow S_{1}$, STHR output
STHR	Right shift start pulse I/O	$\mathrm{R} / \overline{\mathrm{L}}=\mathrm{H}$: Inputs start pulse. $R / \bar{L}=L$: Outputs start pulse.
STHL	Left shift start pulse I/O	$R / \bar{L}=H$: Outputs start pulse. $R / \bar{L}=L$: Inputs start pulse.
$V_{\text {sel }}$	Driver voltage selection	Selects driver voltage. This pin is internally pulled up to Vod2. $\mathrm{V}_{\text {sel }}=\mathrm{V}_{\mathrm{DD} 2}$ or OPEN: $\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\text {sel }}=\mathrm{L}: \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
CLK	Shift clock input	Inputs shift clock to shift register. Display data is loaded to data register at rising edge of this pin. Start pulse output goes high at rising edge of 80th clock after start pulse has been input, and serves as start pulse to driver in next stage. 80th clock of driver in first stage serves as start pulse of driver in next stage.
STB	Latch input	Contents of data register are latched at rising edge, transferred to D/A converter, and output as analog voltage corresponding to display data. Contents of initial shift register are cleared after STB has been input. One pulse of this signal is input when μ PD16641 is started, and then device operates normally. For STB input timing, refer to Relations between STB, Start Pulse, and Blanking Period in Switching Characteristic Waveform.
V_{0} to V_{10}	γ-corrected power supply	Inputs γ-corrected power from external source. $\begin{aligned} & V_{\mathrm{SS} 2} \leq \mathrm{V}_{10} \leq \mathrm{V}_{9} \leq \mathrm{V}_{8} \leq \mathrm{V}_{7} \leq \mathrm{V}_{6} \leq \mathrm{V}_{5} \leq \mathrm{V}_{4} \leq \mathrm{V}_{3} \leq \mathrm{V}_{2} \leq \mathrm{V}_{1} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD} 2} \\ & \mathrm{~V}_{\mathrm{SS} 2} \leq \mathrm{V}_{0} \leq \mathrm{V}_{1} \leq \mathrm{V}_{2} \leq \mathrm{V}_{3} \leq \mathrm{V}_{4} \leq \mathrm{V}_{5} \leq \mathrm{V}_{6} \leq \mathrm{V}_{7} \leq \mathrm{V}_{8} \leq \mathrm{V}_{9} \leq \mathrm{V}_{10} \leq \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$ Maintain gray scale power supply during gray scale voltage output.
VDD1	Logic circuit power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver circuit power supply	$\begin{aligned} \mathrm{V}_{\text {sel }}=\mathrm{V} \text { VD2 or OPEN: } \begin{aligned} \mathrm{VDD2} 2 & =3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{~V}_{\text {sel }}=\mathrm{L} & : \mathrm{V}_{\mathrm{DD} 2} \end{aligned}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$
Vss1	Logic ground	Ground
Vss2	Driver ground	Ground

Caution Be sure to turn on power in the order $V_{D D 1}$, logic input, $V_{D D 2}$, and gray scale power (V_{0} to V_{10}), and turn off power in the reverse order, to prevent the μ PD16641 from being damaged by latchup. Be sure to observe this power sequence even during a transition period.

4. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The 11 major points on the γ characteristic curve of the LCD panel are arbitrarily set by external power supplies V_{0} through V_{10}. If the display data is 00 H or 3 F , gray scale voltage V_{0} or V_{10} is output. If the display data is in the range 01н to 3Ен, the high-order 3 bits select an external powers pair $\mathrm{V}_{\mathrm{n}+1}, \mathrm{~V}_{\mathrm{n}}$. The low-order 3 bits evenly divide the range of V_{n+1} to V_{n} into eight segments by means of D / A conversion (however, the ranges from V_{9} to V_{8} and from V_{2} to V_{1} are divided into seven segments) to output a 64 gray scale voltage.

Relation between Input Data and Output Voltage

Input Data	D×5	Dx4	D×3	Dx2	Dx1	Dxo	Output Voltage
00н	0	0	0	0	0	0	V_{0}
01н	0	0	0	0	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 6 / 7$
02H	0	0	0	0	1	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 5 / 7$
03н	0	0	0	0		1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 4 / 7$
04н	0	0	0	1	0	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 3 / 7$
05\%	0	0	0	1	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2 / 7$
06н	0	0	0	1	1	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1 / 7$
07H	0	0	0	1	1	1	V_{2}
08H	0	0	1	0	0	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 7 / 8$
09н	0	0	1	0	0	1	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 6 / 8$
ОАн	0	0	1	0	1	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 5 / 8$
OBH	0	0	1	0	1	1	$\mathrm{V}_{3}+\left(V_{2}-V_{3}\right) \times 4 / 8$
0 CH	0	0	1	1	0	0	$V_{3}+\left(V_{2}-V_{3}\right) \times 3 / 8$
0Dh	0	0	1	1	0	1	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 2 / 8$
ОЕн	0	0	1	1	1	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 1 / 8$
OFH	0	0	1	1	1	1	V_{3}
10H	0	1	0	0	0	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 7 / 8$
11H	0	1	0	0	0	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 6 / 8$
12H	0	1	0	0	1	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 5 / 8$
13 ${ }^{\text {r }}$	0	1	0	0	1	1	$\mathrm{V}_{4}+\left(V_{3}-V_{4}\right) \times 4 / 8$
14 H	0	1	0	1	0	0	$V_{4}+\left(V_{3}-V_{4}\right) \times 3 / 8$
15 H	0	1	0	1	0	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2 / 8$
16 H	0	1	0	1	1	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 1 / 8$
17H	0	1	0	1	1	1	V_{4}
18н	0	1	1	0	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 7 / 8$
19 н	0	1	1	0	0	1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 6 / 8$
$1 \mathrm{AH}^{\text {H}}$	0	1	1	0	1	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 5 / 8$
$1 \mathrm{~B}+$	0	1	1	0	1	1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 4 / 8$
1 CH	0	1	1	1	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 3 / 8$
$1 \mathrm{DH}^{\text {}}$	0	1	1	1	0	1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 2 / 8$
1Ен	0	1	1	1	1	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 1 / 8$
1 FH	0	1	1	1	1	1	V_{5}
20 H	1	0	0	0	0	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 7 / 8$
21H	1	0	0	0	0	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 6 / 8$
22H	1	0	0	0	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 5 / 8$
23н	1	0	0	0	1	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 4 / 8$
24-	1	0	0	1	0	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 3 / 8$
25 H	1	0	0	1	0	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 2 / 8$
26		0	0	1	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1 / 8$
27-	1	0	0	1	1	1	V_{6}
28н	1	0	1	0	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 7 / 8$
29н	1	0	1	0	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 6 / 8$
2 A $_{\text {н }}$	1	0	1	0	1	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 5 / 8$
2 BH	1	0	1	0	1	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 4 / 8$
2 CH	1	0	1	1	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 3 / 8$
2Dн	1	0	1	1	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 2 / 8$
2Ен	1	0	1	1	1	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1 / 8$
2 FH	1	0	1	1	1	1	V_{7}
30н	1	1	0	0	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 7 / 8$
31H	1	1	0	0	0	,	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 6 / 8$
32н	1	1	0	0	1	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 5 / 8$
33н	1	1	0	0	1	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 4 / 8$
34	1	1	0	1	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 3 / 8$
35 H	1	1	0	1	0	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2 / 8$
36	1	1	0	1		0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1 / 8$
37 H	1	1	0	1	1	1	V_{8}
38	1	1	1	0	0	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 6 / 7$
39	1	1	1	0	0	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 5 / 7$
ЗАн	1	1	1	0	1	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 4 / 7$
3Вн	1	1	1	0	1	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 3 / 7$
3 CH	1	1	1	1	0	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 2 / 7$
3Dн	1	1	1	1	0	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 1 / 7$
ЗЕн	1	1	1	1	1	0	V_{9}
$3 \mathrm{FH}_{\mathrm{H}}$	1	1	1	1	1	1	V_{10}

$\boldsymbol{\gamma}$ Corrected Power Circuit

The reference power supply of the D/A converter consists of a ladder circuit with a total of 64 resistors, and resistance Σ ri between γ-corrected power pins differs depending on each pair of γ-corrected power pins. One pair of γ-corrected power pins consists of seven or eight series resistors, and resistance $\Sigma r i$ in the figure below is indicated as the sum of the seven of eight resistors. The resistance ratio between the γ-corrected power pins (Eri ratio) is designed to be a value relatively close to the ratio of the γ-corrected voltages V_{1} through V_{9} (gray scale voltages in 8 steps) used in an actual LCD panel. Under ideal conditions where there is no difference between the two, therefore, there is no voltage difference between the voltage of the γ-corrected power supplies and the gray scale voltages in 8 steps of the resistor ladder circuits of the μ PD16641, and no current flows into the γ-corrected power pins V_{1} through V9. As a result, a voltage follower circuit is not necessary.

Sum of eight γ-corrected resistors

Relation between Input Data and Output Data

Data format : 1 pixel data (6 bits) \times RGB (3 dots)
Input width : 18 bits
$\mathrm{R} / \overline{\mathrm{L}}=\mathrm{H}$ (right shift)

Output	S_{1}	S_{2}	S_{3}	\ldots	S_{239}	S_{240}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

$R / \bar{L}=L$ (left shift)

Output	S_{1}	S_{2}	S_{3}	\ldots	S_{239}	S_{240}
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	\ldots	D_{10} to D_{15}	D_{20} to D_{25}

5. OPERATION OF OUTPUT BUFFER

The output buffer consists of an operational amplifier circuit that does not perform precharge operation. Therefore, driver output current IvoH $1 / 2$ is the charging current to the LCD, and IvoL $1 / 2$ is the discharging current.

The chip has the driving capability to charge or discharge a liquid load with $\mathrm{CL}=80 \mathrm{pF}$ to 3τ in less than $10 \mu \mathrm{~s}$.

<LCD panel driving waveform of μ PD16641>

1 horizontal period

6. ELECTRIC SPECIFICATION

Absolute Maximum Ratings $\left(\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathbf{0} \mathrm{V}\right)$

Parameter	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$	-0.3 to +4.5	V
Supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	-0.3 to +7.0	V
Input voltage	V_{I}	-0.3 to $\mathrm{V}_{\mathrm{DD} 1,2}+0.3$	V
Output voltage	Vo_{o}	-0.3 to $\mathrm{V}_{\mathrm{DD} 1,2+0.3}$	V
Permissible dissipation	PD_{D}	150	mW
Operating temperature range	T_{A}	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vs} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$		3.0	3.3	3.6	V
Driver supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	$\mathrm{~V}_{\text {sel }}=\mathrm{H}$	3.0	3.3	3.6	V
Driver supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	$\mathrm{~V}_{\text {sel }}=\mathrm{L}$	4.5	5.0	5.5	V
γ-corrected power	V_{o} to V_{10}		$\mathrm{~V}_{\mathrm{SS} 2}+0.1$		$\mathrm{~V}_{\mathrm{DD} 2}-0.1$	V
Maximum clock frequency	$\mathrm{f}_{\text {max. }}$		33			MHz
Output load capacitance	CL				150	pF

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to $5.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{IH}	R/L̄, CLK, STB, STHR (L), Doo-05, D10-15, D20-25		$0.7 \mathrm{~V}_{\text {d } 1}$		VDD1	V
Low-level input voltage	VIL			0		$0.3 \mathrm{VDD1}$	V
Input leakage current	IL	Do0-05, $D_{10-15, ~} D_{20-25}$ R/L̄, CLK, STB, STHR (L)				± 1.0	$\mu \mathrm{A}$
Pull-up resistor	Rpu	$\mathrm{V}_{\text {sel, }}, \mathrm{V}_{\text {DD2 } 2}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {sel }}$, $=0 \mathrm{~V}$		40	100	250	k Ω
High-level output voltage	Vон	STHR (L), $10=-1.0 \mathrm{~mA}$		VDD1 - 0.5			V
Low-level output voltage	Vol	STHR (L), lo $=+1.0 \mathrm{~mA}$				0.5	V
Static current consumption of γ-corrected power (VDD2 $=3.3 \mathrm{~V}$)	IVn1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD1} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{0}=3.20 \mathrm{~V}, \mathrm{~V}_{6}=1.95 \mathrm{~V} \\ & \mathrm{~V}_{1}=3.07 \mathrm{~V}, \mathrm{~V}_{7}=1.70 \mathrm{~V} \\ & \mathrm{~V}_{2}=2.80 \mathrm{~V}, \mathrm{~V}_{8}=1.46 \mathrm{~V} \\ & \mathrm{~V}_{3}=2.57 \mathrm{~V}, \mathrm{~V}_{9}=1.11 \mathrm{~V} \\ & \mathrm{~V}_{4}=2.34 \mathrm{~V}, \mathrm{~V}_{10}=0.10 \mathrm{~V} \\ & \mathrm{~V}_{5}=2.12 \mathrm{~V},{ }^{\text {Note }} \end{aligned}$	V_{10}	-200	-150		$\mu \mathrm{A}$
			V9 to V_{1}		± 10		$\mu \mathrm{A}$
			V_{0}		150	200	$\mu \mathrm{A}$
Static current consumption of γ-corrected power (VDD2 $=5.0 \mathrm{~V}$)	IVn2	$\begin{aligned} & \mathrm{V} D D 1^{=}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{0}=4.90 \mathrm{~V}, \mathrm{~V}_{6}=2.96 \mathrm{~V} \\ & \mathrm{~V}_{1}=4.69 \mathrm{~V}, \mathrm{~V}_{7}=2.58 \mathrm{~V} \\ & \mathrm{~V}_{2}=4.28 \mathrm{~V}, \mathrm{~V}_{8}=2.20 \mathrm{~V} \\ & \mathrm{~V}_{3}=3.92 \mathrm{~V}, \mathrm{~V}_{9}=1.66 \mathrm{~V} \\ & \mathrm{~V}_{4}=3.56 \mathrm{~V}, \mathrm{~V}_{10}=0.1 \mathrm{~V} \\ & \mathrm{~V}_{5}=3.23 \mathrm{~V}, \text {,ote } \end{aligned}$	V_{10}	-300	-250		$\mu \mathrm{A}$
			V_{9} to V_{1}		± 10		$\mu \mathrm{A}$
			V_{0}		250	300	$\mu \mathrm{A}$

($\mathrm{V} x$ is output voltage of analog output pin S_{1} to S_{240}. Vout is the voltage applied to analog output pin S_{1} to S_{240}.)

Note Apply ideal voltage to V_{1} to V_{9} that is calculated from internal resistor.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to $5.5 \mathrm{~V}, \mathrm{Vss}_{1}=\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Driver output current$(\mathrm{VDD2}=3.3 \mathrm{~V})$	Ivor1	$\begin{aligned} & \mathrm{STB}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=2.2 \mathrm{~V}, \mathrm{~V}=3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$		-0.3	-0.075	mA
	IvoL1	$\begin{aligned} & \mathrm{STB}=3.3 \mathrm{~V} \\ & \mathrm{Vout}=1.1 \mathrm{~V}, \mathrm{~V}=0.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$	0.075	0.25		mA
Driver output current$(\mathrm{VDD2}=5.0 \mathrm{~V})$	Іvoн2	$\begin{aligned} & \text { STB }=5.0 \mathrm{~V} \\ & \text { Vout }=3.9 \mathrm{~V}, \mathrm{~V}=4.9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{VD} 2=5.0 \mathrm{~V} \end{aligned}$		-0.3	-0.1	mA
	Ivol2	$\begin{aligned} & \mathrm{STB}=5.0 \mathrm{~V} \\ & \mathrm{VOUT}^{\mathrm{S}}=1.1 \mathrm{~V}, \mathrm{~V} \mathrm{X}=0.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{VD} 2=5.0 \mathrm{~V} \end{aligned}$	0.1	0.25		mA
Output voltage deviation	$\Delta \mathrm{V}$ 。	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=1.65 \end{aligned}$		± 20	± 25	mV
		$\begin{aligned} & \mathrm{VDD1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \\ & \text { Vout }=2.50 \mathrm{~V} \end{aligned}$		± 20	± 25	mV
Output voltage range	Vo	Input data: 00 H to 3 FH	Vss2 +0.1		VDD2 - 0.1	V
Dynamic logic current consumption	lod 1	No load ${ }^{\text {Note }}$			2.0	mA
Dynamic driver current consumption	$1 \mathrm{DD21}$	No load, $\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}^{\text {Note }}$			5.0	mA
Dynamic driver current consumption	IDD22	No load, $\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}^{\text {Note }}$			6.5	mA

Note The STB cycle is specified at $31 \mu \mathrm{~s}$ and fcLk $=16 \mathrm{MHz}$. Input data: $1010 \ldots$ (checkerboard pattern) Refers to current consumption per driver when cascades are connected under the assumption of VGA single-sided mounting (8 units).

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD} 2}=3.0$ to 3.6 V or 4.5 to 5.5 V , $\mathrm{Vss} 1=\mathrm{Vss}^{2}$

$$
\left.=0 \mathrm{~V}, \mathrm{tr}=\mathrm{t}_{\mathrm{t}}=3.0 \mathrm{~ns}\right)
$$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Start pulse delay time	tPLH1	$C \mathrm{~L}=15 \mathrm{pF}$		2.0		17	ns
Start pulse delay time	tpHL1	$\mathrm{CL}=15 \mathrm{pF}$		2.0		17	ns
Driver output delay time 1	tPLH21	$\begin{aligned} & V_{D D 2}=3.3 \mathrm{~V} \\ & 2 \mathrm{k} \Omega+75 \mathrm{pF} \times 2 \end{aligned}$	Vo: $0.1 \mathrm{~V} \rightarrow 3.2 \mathrm{~V}$		6.0	12	$\mu \mathrm{s}$
Driver output delay time 2	tPLH31				8.0	14	$\mu \mathrm{s}$
Driver output delay time 1	tPHL21		Vo: $3.2 \mathrm{~V} \rightarrow 0.1 \mathrm{~V}$		6.0	10	$\mu \mathrm{s}$
Driver output delay time 2	tphl31				8.0	12	$\mu \mathrm{s}$
Driver output delay time 1	tPLH22	$\begin{aligned} & \mathrm{VDD2}=5.0 \mathrm{~V} \\ & 2 \mathrm{k} \Omega+75 \mathrm{pF} \times 2 \end{aligned}$	V : $0.1 \mathrm{~V} \rightarrow 4.9 \mathrm{~V}$		6.0	10	$\mu \mathrm{s}$
Driver output delay time 2	tPLH32				8.0	12	$\mu \mathrm{s}$
Driver output delay time 1	tPHL22		Vo: $4.9 \mathrm{~V} \rightarrow 0.1 \mathrm{~V}$		6.0	8.0	$\mu \mathrm{s}$
Driver output delay time 2	tPHL32				8.0	10	$\mu \mathrm{s}$
Input capacitance	Cl_{11}	V_{0} to $\mathrm{V}_{10}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100		pF
Input capacitance	Cl 2	STHR (L), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	15	pF
Input capacitance	Cl_{13}	STHR (L), other than V_{0} to $\mathrm{V}_{10}$$T_{A}=25^{\circ} \mathrm{C}$			7.0	10	pF

Timing Requirements $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD1}=3.0$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{dD} 2}=3.0$ to 3.6 V or 4.5 to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$, $\mathbf{t r}=\mathbf{t f}=\mathbf{3 . 0} \mathbf{n s}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWcık		22			ns
Clock low period	PWCLK(L)		4.0			ns
Clock high period	PWCLK(H)		4.0			ns
Data setup time	tsetup1		2.0			ns
Data hold time	thold 1		2.0			ns
Start pulse setup time	tsetup2		2.0			ns
Start pulse hold time	thold		2.0			ns
Start pulse low period	tspL		2			CLK
Start pulse rise time	tspr		80			CLK
STB setup time	tsetup3		1			CLK
Data invalid period	tinv		1			CLK
Final data timing	tlot				1	CLK
CLK-STB time	tclu-stb	CLK $\uparrow \rightarrow$ STB \uparrow or \downarrow	7.0			ns
STB-CLK time	tstb-clk	STB \uparrow or $\downarrow \rightarrow$ CLK \uparrow	7.0			ns

7. SWITCHING CHARACTERISTIC WAVEFORM (R/ $\bar{L}=H$)

Unless otherwise specified, the input level is $\mathrm{V}_{\mathrm{IH}}=0.7 \mathrm{VDD1}, \mathrm{~V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD} 1}$.

Switching Characteristic Waveform

8. RELATION BETWEEN STB/STHR, STHL AND BLANKING PERIOD

9. DATA INPUT TIMING IN CASCADE CONNECTION

10. RECOMMENDED MOUNTING CONDITIONS

Mounting this product under the following conditions is recommended.
For the mounting methods and conditions other than those recommended, consult NEC.

Mounting Conditions	Mounting Method	Conditions
Thermocompression bonding	Soldering	Heating tool: 300 to $350^{\circ} \mathrm{C}$, Heating time: 2 to 3 seconds, Pressure: 100 g (per product)
	ACF (sheet adhesive)	Preliminary adhesion: 70 to $100^{\circ} \mathrm{C}$, Pressure: 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$, Time: 3 to 5 seconds Real adhesion: 165 to $180^{\circ} \mathrm{C}$, Pressure: 25 to $45 \mathrm{~kg}^{\circ} / \mathrm{cm}^{2}$, Time 30 to 40 seconds (when SUMIZAC1003 of Sumitomo Bakelite is used)

Note For the mounting conditions for ACF, consult the ACF manufacturer. Do not use two or more mounting methods in combination.

Reference

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades to NEC's Semiconductor Devices (C11531E)
[MEMO]
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

